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Experimental evidence and a theoretical formulation describing the interaction be- 
tween a progressive surface wave and a nearly standing subharmonic internal wave in 
a two-layer system are presented. Laboratory investigations into the dynamics of an 
interface between water and a fluidized sediment bed reveal that progressive surface 
waves can excite short standing waves at this interface. The corresponding theoretical 
analysis is second order and specifically considers the case where the internal wave, 
composed of two oppositely travelling harmonics, is much shorter than the surface 
wave. Furthermore, the analysis is limited to the case where the internal waves 
are small, so that only the initial growth is described. Approximate solution to the 
nonlinear boundary value problem is facilitated through a perturbation expansion in 
surface wave steepness. When certain resonance conditions are imposed, quadratic 
interactions between any two of the harmonics are in phase with the third, yielding a 
resonant triad. At the second order, evolution equations are derived for the internal 
wave amplitudes. Solution of these equations in the inviscid limit reveals that, at this 
order, the growth rates for the internal waves are purely imaginary. The introduction 
of viscosity into the analysis has the effect of modifying the evolution equations so 
that the growth rates are complex. As a result, the amplitudes of the internal waves 
are found to grow exponentially in time. Physically, the viscosity has the effect of 
adjusting the phase of the pressure so that there is net work done on the internal 
waves. The growth rates are, in addition, shown to be functions of the density ratio 
of the two fluids, the fluid layer depths, and the surface wave conditions. 

1. Introduction 
The present work is motivated by recent studies on wave-seabed interactions. It 

is well known that the loading of water waves on a sediment bed can result in bulk 
fluidization of the bed. This refers to the condition in which the contact stresses 
between particles vanish and results in the bed losing its shear strength and behaving 
much like a fluid. The broad-based interest in understanding this phenomenon derives 
from its application to studies in sediment transport, wave attenuation, and the design 
of marine structures. 

Recent experimental efforts by Foda & Tzang (1994) reported that under the load- 
ing of progressive surface waves, a silty sediment bed was repeatedly and extensively 
fluidized. The present study details further experiments, as well as a theoretical for- 
mulation, which specifically address the issue of the behaviour of the water-sediment 
interface following fluidization. The experimental results demonstrate the formation 
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of short, standing, subharmonic waves at the interface. The objective of the theoretical 
analysis, therefore, is to provide a description of a general mechanism for subhar- 
monic resonance of internal waves by a progressive surface wave. The specific focus 
is on the case where the internal waves are much shorter than the generating surface 
wave. By assuming the fluidized sediment bed to be a fluid, one major difficulty is 
immediately surmounted and the analysis reduces to one of pure fluid mechanics. 

Numerous previous studies have addressed the topic of interactions between surface 
and internal waves. A linear resonance theory by Ting & Raichlen (1986) describes 
the generation of internal waves inside a trench of finite length. In this analysis, 
internal waves were found to be excited when the frequency of the overlying surface 
wave matched the frequency of one of the internal wave modes of the trench. To 
describe the excitation of non-synchronous internal waves, however, clearly requires 
a nonlinear theory. 

Ball (1964) was the first to propose nonlinear resonant excitation of internal waves 
by surface waves and went on to demonstrate that interactions between surface waves 
and internal waves could take place at the second order. Specifically, he employed the 
nonlinear shallow water equations in order to present a wave-triad resonance theory 
between two oppositely travelling surface waves and a progressive internal wave. 
Absent from Ball’s theory were the effects of wave dispersion and fluid viscosity. 
Dispersion effects were later considered by Brekhovskikh et al. (1972) and Thorpe 
(1966) in attempts to extend Ball’s theory for the same interacting triad. 

When the waves satisfied a resonance condition, it was shown that initial growth 
of the internal wave was linear in time. Mathematically, this condition corresponds 
to 

X = k ,  - k 2  
0 = m 1 - 0 2  

where 0 and /z are the internal wave’s frequency and wavenumber vector, and mi and 
ki, i= 1,2 are the frequencies and wavenumber vectors corresponding to the surface 
waves. 

This triad is graphically illustrated in figure l(a), which shows the dispersion 
relationship of a two-layer fluid system with a free surface and layers of finite 
depth. The different branches of the curve represent both surface and internal waves, 
denoted by S and I respectively, and right- and left-travelling waves, denoted by 1 
and 2. An arbitrary wave may be represented as a vector originating at the origin 
and terminating on one of the branches of the curve. From the principles of vector 
addition, a resonant triad is therefore defined by any three wave vectors which make 
up the sides and diagonal of a parallelogram. Ball demonstrated that, associated with 
the arbitrary surface wave denoted by point A, there were two possible triads. These 
triads are denoted by the points A, B1 and C1 and A, B2 and C2 respectively. 

The present study seeks to further extend the interaction problem by looking 
at a different interaction path, with a wave triad different from that considered 
by previous authors. The primary carrier of energy is a single progressive surface 
wave with amplitude of order unity. Two oppositely travelling small internal wave 
perturbations complete the triad. The viability of this triad is clearly illustrated in 
figure l(b). The points A, B3 and C3 represent a third resonant triad involving 
the same arbitrary surface wave considered by Ball. Moreover, it is clear that the 
internal waves are quite short in comparison to the surface wave and are very nearly 
subharmonic to the surface wave. 



Resonance of short internal standing waves by progressive surface waves 219 

-I .5 -1 .0 -0.5 0 0.5 1 .o 1.5 

Wavenumber 
1 0  

0 8  

x 0 6  
0 

3 
& 
b- 0 4  

0 2  

n 
-1.5 -1 .0 -0.5 0 0.5 1 .o 1.5 

Wavenumber 
FIGURE 1. Two-layer dispersion relationship: (a) illustrating resonant triads pursued by Ball (1964), 

( h )  illustrating new resonant triad. 

The present analysis uses both a perturbation expansion of the velocity potential 
and a multiple time scale, in which the internal wave amplitudes are assumed to 
be slowly varying functions of time. Only the two-dimensional problem, in which 
all three waves are plane and parallel, is considered. Dispersion effects are included 
by allowing for variable fluid depths. The analysis proceeds by first developing 
the leading-order linear harmonic solutions for the surface and internal waves. At 
the second order, quadratic interactions among the linear harmonics provide the 
forcing for the higher-order harmonics. A solvability condition, in the form of an 
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application of Green’s theorem, is then imposed on the inhomogeneous second-order 
problem. This condition yields the desired evolution equations for the internal wave 
perturbations. 

In addition to pursuing an entirely new triad, the present analysis differs fundamen- 
tally from those of the previous authors in that a single wave is the primary carrier 
of energy. The difference emerges upon consideration of the general interaction 
equations. For a wave triad in a general system with no dissipation, the interaction 
equations are given by (see e. g. Simmons 1969) 

dal . daz . * da3 . 
- = l a l U 2 a 3 ,  - = lC12U1U3, - = lC13U1U2. 
dtl dtl dtl 

In the above, al, a 2 ,  and a 3  are the complex amplitudes, which are functions of 
the slow time scale tl.  The interaction coefficients a1, a2, and a3 are specific to the 
particular system being considered. The nature of this set of equations is such that if 
all three of the amplitudes are assumed to be of the same order, say O(1), then the 
solutions are elliptic functions of time. If two of the amplitudes, say al and u2, are 
assumed to be O( 1) and u 3  is assumed to be O(e) ,  then, to the leading order, only the 
third equation is retained and a 3  will initially grow linearly in time. As a3 becomes 
O(1), the other two equations will become significant and the three harmonics will 
continue to exchange energy. These are the results found by Ball. 

In the present analysis, however, a 3  is defined as the surface wave amplitude, 
assumed to be O( l), and al and a2 are defined as the internal wave amplitudes, each 
assumed to be O(e).  The slow time derivatives of the internal wave amplitudes are 
therefore 0(1), and that of the surface wave O(e2). To the leading order of analysis, 
therefore, the third equation is discarded. Solution of the two remaining equations 
reveals that the internal wave amplitudes evolve exponentially with growth rates 
-k(-ala2)1/2. These growth rates are consequently shown to be purely imaginary. In 
other words, despite the presence of a resonant triad, there is no growth at this order 
of analysis. 

Following the inviscid formulation, which leads to a marginally stable interaction, 
viscosity is introduced for the first time into the general interaction problem. The 
results indicate that viscosity triggers an exponential growth of the internal wave 
amplitudes. Mathematically, the inclusion of the viscous terms modifies the coefficients 
of the evolution equations so that the growth rates are complex rather than purely 
imaginary. From a physical standpoint, the inclusion of viscosity adjusts the phase 
of the pressure forcing the internal wave so that there is net work done over a wave 
period. This role of viscosity as a destabilizing rather than a stabilizing agent has 
emerged as a significant and unexpected result of the present analysis. 

2. Experimental investigation 
2.1. Setup 

The experiments were conducted in a wave flume measuring 30 m in length, 1.86 m 
in depth and 0.45 m in width. Surface waves were generated at one end by a hinged 
mechanical wavemaker and absorbed at the other end by a 1 : l O  slope beach. A false 
floor was constructed so as to create a sediment trench 3.0 m in length, 0.85 m in 
depth and 0.45 m in width. A 1:8 slope ramp was used to provide smooth transition 
in bottom depth. The details of the experimental setup can be seen in figure (2). 

The first step in the experimental procedure consisted of placing the sediment bed 
in the trench. The soil used was a commercially available fine silt with a mean grain 
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1.8 m 

size of d50 = 50 pm. The bed was placed by partitioning off the trench from the rest 
of the flume and filling it with a well-mixed slurry of soil and water. This was then 
allowed to settle overnight. The partitions were then removed and the flume slowly 
filled with water. A typical experimental run consisted of a period of wave loading 
of the order of three minutes. After a run, the bed was allowed to reconsolidate for 
a period of the order of half a day. In this way, successive experiments could be 
conducted on the same bed without remixing, allowing investigation into the effects 
of cyclic fluidization and consolidation. 

The interface between the water and the sediment bed was recorded using a 
Panasonic video camera, operating at thirty frames per second. Two incandescent 
lamps affixed to the top of the flume served to illuminate the region over the bed. 
Graphic images were acquired using a Data Translation DT2851 Image Grabber and 
IPPLUS image processing software. To obtain qualitative results required only some 
adjustment of contrast and minor editing. 

2.2. Results 
Figure 3 details a series of images of the water-sediment interface. For this experi- 
mental run, surface waves having a period of T = 1.4 s were generated in water of 
0.60 m depth. Note that this depth refers to the false floor and not the actual floor of 
the flume. The amplitude of the surface wave was 0.14 m, and the wavelength over 
the bed was roughly 2.1 m. 

The images are spaced at 0.5T intervals, and clearly show a flat interface alternating 
with one characterized by distinct, regular ripples. For example, the image at 3.OT 
shows three prominent crests and two troughs. The following image at 3.5T shows 
a flat interface. At 4T, three troughs and two crests are seen which are very nearly 
180" out of phase with those seen at 3T. This pattern persists in the next few images 
so that the image at 5T is virtually identical to that at 3T, with a slight phase shift. 

This, combined with the fact that the period of this behaviour is 2T demonstrates 
the presence of a nearly standing wave that is subharmonic to the surface wave. 
Moreover, the wavelength of the ripples in the images is approximately 0.3 m, a 
full order of magnitude shorter that the surface wave. These experimental results 
therefore strongly motivate the pursuit of a theoretical formulation of this wave-triad 
interaction. 

3. Theoretical formulation 
The origin of a two-dimensional Cartesian coordinate system is placed on the 

undisturbed interface between a surface layer of depth H ,  density p,  and viscosity 
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FIGURE 3.  Images of water-sediment interface. Images are at intervals 
of one half of the surface wave period. 
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v ,  and a viscous lower layer of depth h, density p’, and viscosity v’, as sketched in 
figure 4. The y-coordinate is defined as pointing vertically upward and the density 
ratio y = p/p’  is assumed to be less than unity. To the leading order, the wave 
field is made up of a linear progressive surface wave of amplitude A,  wavenumber k,  
and frequency LO, propagating in the positive x-direction. The perturbation internal 
waves have amplitudes al and a?, wavenumbers and IL2, frequencies o1 and 02, and 
propagate in the negative and positive x-directions, respectively. Note that al ,  a2 and 
A are taken to be complex and il, i 2 ,  GI, and 0 2  are all defined to have positive real 
values. For resonant interactions to occur, the following resonance conditions are 
imposed on the triad’s wavenumbers and frequencies : 

From the assumption that the wavenumber of the surface wave is much smaller 
than the wavenumbers of the internal waves, (1) implies that 1.1 = i z .  From the 
dispersion relationships of the internal waves, this can be seen to result in c1 = 02. 

From (2), it can then be concluded that 01,02 = i(u. In other words, the internal 
waves are each nearly subharmonic to the surface wave and, as such, comprise a 
nearly standing wave, as was illustrated in figure 2. With this established, attention is 
turned to the mathematical formulation of the problem. 

In both layers, the Navier-Stokes equations are employed : 

Dt 0 <y 6 H + t, (4) 

where u = (u ,v)  is the velocity vector, g is the acceleration due to gravity, and p is 
the pressure. 
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The kinematic and dynamic free-surface boundary conditions are given by 

~ = u, 
Dt 
D5 

v = H + 5 7  

P = 0, Y = H + 5 ,  (7) 

At the bottom of the lower layer, the following no-slip and no-flow conditions are 
In the above, 5 is the free-surface displacement from its equilibrium value of H .  

imposed : 

u = 0, 
u = 0, 

At the perturbed interface between the two liquids, the usual kinematic conditions 
are given by 

r l r  + u+y, = u+, 

ul t  + u - y ,  = u-, 

where y is the displacement of the interface from its equilibrium value of y = 0. 
The + and - superscripts denote evaluation of the velocities at y = y+ and y = y- 
respectively. 

The dynamic condition of continuity of normal stress at the interface requires 

( p  - 2pvu,)+ = ( p  - 2p’v’vy)-, Y =?I. (12) 
And finally, owing to the inclusion of viscosity in both layers, there are the 

additional conditions of continuity of shear stress and horizontal velocity : 

4. Solution 
Equations (3)-( 14) define the adopted model for the coupled two-layer system. A 

perturbation analysis is subsequently employed to facilitate approximate solution to 
the above equations. The analysis is carried to the second order of interaction, and 
as a first step, the following choices of non-dimensionalization are introduced : 

(X*,Y*)  = k(X,Y)7 t* = ( g k j ’ / 2 t ,  H *  = k H ,  

h’ = 21 h, 

* b  5 = -  
A’ 

(u7 u )  (u*,v*)  = 
A ( g k j 1 / 2  ’ 

* v l  
k A  

@ 
A ( g / k ) l j 2  ’ 

v = 7 7  

@* = 

In the above equations, A is the constant amplitude of the surface wave, and the 
asterisks denote non-dimensional quantities. Substitution of these variables into the 
governing equations reduces the solution to a purely non-dimensional one and the 
asterisks will be dropped for convenience. 
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Next, several small parameters are identified. The first is the steepness of the 
surface wave, denoted as 

E = kA. 

Additionally. it is desirable to introduce new viscosity parameters, scaled as 
I 4 1  6 ’’ V = € K ,  V = f K, - = O(€’), 

Ll ‘ 
where IC and K’ can be up to O(1). These particular choices of scaling may seem 
arbitrary, but they in fact serve two very significant purposes. First, the assumption 
of relatively weak viscosity in both layers removes to the third order some of the 
viscous effects. This will be discussed in greater detail later. Second, the assumption 
that the upper fluid be much less viscous than the lower fluid allows a reduction of 
the interfacial boundary conditions. This is physically consistent with the situation 
of having a layer of water over a layer of fluidized sediment. As a consequence, (13) 
can be shown to reduce to the following form: 

(uy + vJ = W e ) ,  y = y. (15) 
In other words, the condition of continuity of interfacial shear reduces, to the leading 
order, to the condition that the shear in the lower layer is zero at the interface. This 
reduces the problem to one of an inviscid upper layer overlying a viscous lower layer. 

Finally, and as previously mentioned, the wavelengths of the internal waves are 
assumed much smaller than that of the surface wave, yielding two more small 
parameters of the form 

i = 1,2. 
k 
4 

f << p, = 7 << 1, 

It is worth noting that it is possible to proceed without this last assumption and 
devise an analysis for a general wave triad. However, the laboratory observations 
motivate concentration on short internal waves. Additionally, unless pL, i = 1,2 are 
small, it is not possible to obtain nearly subharmonic behaviour at the interface. The 
relative scalings between f and pi are essential to the convergence of the problem. 

In the lower layer, it is desirable to isolate the effect of viscosity. To this end, 
the velocity vector u may be taken as the sum of an inviscid irrotational vector 
(Qx, QL 1, where di is a velocity potential function, and a viscous solenoidal vector 
( U ,  V ) .  Combining this with (3) immediately reveals that di is governed by Laplace’s 
equation throughout the entire depth of the fluid: 

V2Q = 0, -p1h 6 Y  6 H .  (16) 
The governing equation for the solenoidal velocity vector U is obtained from the 

momentum equation for the lower layer, (5 ) ,  and has the form 

u, - e4rCv2u = r (VQ + U )  x (V x U ) ,  -pih 6 . ~  < 0. (17) 

From this equation, it is clear that U must have a boundary layer structure at both 
the bottom and the interface. Within these boundary layers, the vertical scale must be 
much shorter than the horizontal scale. Therefore, the following vertical coordinate 
may be introduced inside the boundary layers: 
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This implies, with the help of continuity, that V / U  = O(e2) .  
Turning to the boundary conditions, the free-surface kinematic and dynamic bound- 

ary conditions (6), (7) may be combined to eliminate ( and a Taylor series expansion 
around y = H is used to arrive at 
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@tt + @y = +(V@ * V@)t + W y  + @tt)@tl,> + O( d, y = H .  (18) 

The bottom boundary conditions are rewritten as 

GY = 0 ( € 2 ) ,  

@x + u = 0, 

Finally, the interfacial boundary conditions (lo), (1 1) and (12) may be combined 
in order to eliminate 11. Using a Taylor series expansion about y = 0, the kinematic 
conditions combined yield 

@- - @+ = f  
1 

1 

-(@; + u- - @m@; - @J 

1 - Y  

( 1 - 7  Y Y 

(@FY - @,+,)(y@T - @J + O(&, y = 0. (21) 1 -~ 

Recall that the + and - superscripts denote evaluation just above and below the 
linearized interface y = 0. 

Similarly, manipulation of the dynamic condition yields 

(@; + @J - y ( @ L  + @;) = E{-(V@- * v@-)t + y(V@+ * V@+), 

- (@; + ;(u-)2)l - u-@i,}, y = 0. (22) 

2@lJ + u; = O ( E ) ,  y = 0. (23) 

And finally, revisiting the interfacial shear condition yields 

4.1. The inviscid limit 
The problem is greatly simplified if both layers are assumed to be inviscid. In this case, 
the solenoidal contribution to the velocity vector disappears. The velocity potential 
@ is then expanded as 

+ d 4 ,  4 ) )  @ = 4el(x-mt) + e{vel(x/Pl + m r )  + Xe"''2-u2t) 

+ €'{. . . + y 'e ' (x /P l+~l f )  + X'el(Y/Pz-u2t) + . . . } + C.C. (24) 
In this expansion, the first three terms are the linear harmonics describing the 
interacting wave triad. Recalling that the analysis is restricted to the case of small 
internal waves only, the internal wave harmonics appear at O ( E )  and not at O(1). 
The fourth term represents the forced motion due to self-interaction of the surface 
wave. Terms in the second bracket are forced harmonics due to interactions between 
the surface wave and the internal waves, and C.C. denotes the complex conjugate. To 
clarify what is meant by a forced harmonic, note for example that the product of 
4el(x-Wt) and yel(X/P1ful') yields, with the help of (1) and (2), a term that is in phase 
with Xe'(X'P2-"2'). Such terms will then provide boundary forcing in the inhomogeneous 
boundary value problem for x'. 
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4.1.1. Linear Iiurmonics 
The linear harmonics all satisfy Laplace's equation (16) and the linear versions of 

the boundary conditions (18), (S9), (21), and (22). A slow time scale is introduced, 
defined by t i  = et. Recall that the internal wave amplitudes are taken to be functions 
of this slow time scale. For the surface wave, the solution is given by 

with the accompanying dispersion relationship given by 

(u' = tanh(H) + 0 ( p r l h )  

The solution for the left-travelling internal wave perturbation is given by 

VI = -i,ulolale-"~L' + O(epH/pl), 0 <Y < H ,  

where the O(e-H'l'I) terms arise from the free-surface boundary condition. 
dispersion relationship is given by 

The 

Note that 1 - 
behaviour is not possible in strongly stratified systems. 

is necessarily the same order as pl .  This reveals that subharmonic 

Finally, for the right-travelling internal wave z, the solution is given as 

= ip20za2e-J/iL2 + O(e-Hijll 1, 0 <Y < H ,  

with the dispersion relationship 

4.1.2. Forced harmonics and the solvability condition 
At the second order, O(C'), quadratic interactions between the above linear har- 

monics give rise to secular term forcing on the right-hand sides of the nonlinear 
boundary conditions (18), (21), and (22). Since the homogeneous version of the 
boundary value problem had a non-trivial solution, the inhomogeneous problem has 
a solution only if the forcing terms are orthogonal to the homogeneous solution. This 
orthogonality can be expressed i n  the form of an application of Green's theorem and 
will result in the desired evolution equations for the internal wave amplitudes. 

For example, to solve for x', which represents the forced second-order harmonic in 
phase with the right-travelling internal wave, (24) is substituted into the governing 
equation and boundary conditions. Then, terms proportional to e2 and e1(y/k-"2f) are 
collected to yield the inhomogeneous problem. Applying Green's theorem to x' and x 
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across the depths of both layers yields 

rO 

With manipulation, these equations lead to the following evolution equation : 

da2 . 
- = 1a2al, 
dtl 

Repeating this process for the other internal forced harmonic, w’, yields the second 
evolution equation 

+ (1 - coth(h))(y - 1)(1/P2)1. 
Cross-differentiation of (27) and (28) yields the solutions for the internal wave 

amplitudes. 

(29) +(-u,a*)’f2t, al,a2 cc e- 

Recalling that oI m 02 and pl m p2, it is clear that the interaction coefficients al and 
a2 are of the same sign. Therefore, the growth rate in this inviscid solution is purely 
imaginary. As a result, the solution predicts that the amplitudes of the perturbation 
internal waves will modulate slowly with time but will not exhibit instability in the 
form of exponential growth. The conclusion is that the internal wave is marginally 
stable in the inviscid case. 

4.2. Viscous interaction 
By introducing viscosity and a non-zero solenoidal velocity in the lower layer, the 
forcing on the right-hand side of the interfacial boundary conditions (21), (22) 
contains terms not present in the inviscid formulation. This results in modified 
evolution equations for the amplitudes of the internal waves. In this section, leading- 
order modifications due to viscosity are introduced to the interaction formulation 
described in the previous section. 

As before, a velocity potential @ exists in both layers, as expanded in (24). The 
three linear harmonics have the same solutions and dispersion relationships as found 
in the inviscid formulation. In the lower layer however, in addition to the irrotational 
velocity vector, there now exists the solenoidal velocity vector U .  There are two 
boundary layers to solve for in the lower layer: one at the interface and one at the 
bottom. In general, both the horizontal and vertical components of the solenoidal 
velocity vector can contribute to the boundary forcing. However, based on the 
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assumption of weak viscosity, it was shown that I/ = O(e2)U.  As a result, solutions 
for the vertical components need not be pursued at this order of analysis. With this, 
the solution for the bottom boundary layer can be neglected entirely, as it is V and 
not U which yields corrections to the bottom boundary condition and, ultimately, the 
evolution equations. The effects of stronger viscosity will be presented in future work. 

To solve for U ,  a form consistent with the linear wave triad is adopted: 

1 + C.C. (30) c/ = ~ o ( y ) e l ( ~ - ~ ~ [ )  + €{  u1 (y)eI(X/Pl + c I ~ )  + U2(y)e1(x/P'-c?') 

Substituting (30) into the leading-order forms of (23) and (17) and assuming that U 
goes to zero as j j  + -a, it is easily shown that 

I uo = 0, 

Having obtained U ,  solution of the inhomogeneous problem for the forced har- 
monics may be repeated. Reapplying Green's theorem to x' and x across both of the 
fluid layers yields the viscosity-modified evolution equation for a2 

Repeating the analysis for the other harmonic tp' leads to the companion modified 
evolution equation 

As before, cross-differentiation between the two evolution equations leads to the 
solutions for the internal wave amplitudes. 

(34) 
Clearly, the coefficients of the interaction equations have been modified by the 

inclusion of viscosity so that they are now both complex. The result of this is that the 
growth rates are now complex, unlike the inviscid case in which they were found to 
be purely imaginary. The real part of the growth rates leads to exponential growth of 
the internal waves. Physically, the effect of the viscosity is to adjust the phase of the 
pressure at the interface. As a result, the interfacial pressure and normal velocity are 
no longer 90" out of phase, and there is work done on the internal waves, leading to 
physical growth of their amplitudes. Having completed the formulation and solution, 
attention is now given to the quantitative and qualitative nature of the results. 

4.3. Theoretical results and discussion 
As already mentioned, the imaginary part of the growth rates modulates the frequency 
of the internal waves and the real part describes the exponential growth of their 

a l ,  e+(-a;a:;)"% 
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amplitudes. Both the growth rate and the modulation are functions of H ,  h, w,  K’,  e, 
and y. As the primary emphasis of this study has been on quantifying the physical 
growth of the internal waves, the dependence of the frequency modulation on the 
various parameters is not discussed except to note that the inclusion of viscosity 
reduces the amount of modulation. 

To be consistent with the formulation, the results are presented in a non-dimensional 
format. Furthermore, note that the growth rates have been converted back to the fast 
time scale. To aid in the physical interpretation of the results, one set of computations 
for dimensional parameters is considered before turning to the non-dimensional 
results. The following input values were specified: H = 5 m, h = 0.5 m, w = lrad s-’, 
A = 0.5 m, v’ = 10-2m2 s-’, y = 0.95. The corresponding non-dimensional parameters 
are given by: H = 0.781, h = 0.637, w = 0.808, CT~ = 0.387, o2 = 0.421, ,ul = 0.123, p2 = 
0.109,~. = 0.078, IC’ = 5.30. The associated e-folding time constant of the internal 
waves is found to be 316 s. With these dimensional results as an example, attention 
is turned to the variation of the non-dimensional growth rates with each of the 
non-dimensional input parameters. 

Recall that for the inviscid case, the growth rates were found to be purely imaginary, 
so that the amplitudes did not exhibit exponential growth. The effect of the lower- 
layer viscosity on the growth rate of the internal waves is illustrated in figure 5(a). 
Clearly, the growth rate is an increasing function of viscosity. Note as well that in 
the asymptotic case of zero viscosity, the growth rate approaches zero, recovering the 
results of the inviscid limit. 

Figure 5(6)  demonstrates that the growth rates are decreasing functions of the 
upper-layer depth. This result makes clear physical sense because as the upper layer 
becomes large with respect to the surface wavelength, the effects of the free surface, 
and therefore the pressure and velocity forcing, are substantially diminished at the 
interface. Figure 5(c) indicates a similar behaviour of the growth rates with respect 
to the lower-layer depth. An interesting difference, however, is that as the lower layer 
becomes deep, the growth rates asymptote to a finite value, rather than to zero as 
was the case for the upper-layer depth. This suggests that the analysis may find an 
application to thermocline dynamics, where a finite upper layer overlies a very deep 
lower layer. 

The effect of the density ratio on the growth rates is illustrated in figure 5 ( d )  
As shown, weakly stratified systems are significantly more unstable than moderately 
stratified systems. This clearly agrees with the physical intuition that a strong density 
gradient in a stratified system is stabilizing. 

Finally, the steepness of the surface wave is an extremely important parameter, 
as is expected since it served as the parameter of expansion. As demonstrated in 
figure S(e), the effect of increasing steepness is to increase the growth rates. This 
result as well is consistent with physical intuition which suggests that as the surface 
wave climate becomes more severe, the excitation of internal waves will be enhanced. 
Finally, the effect of the surface wave frequency was found to be slight and is not 
shown. 

4.4. Concluding remarks 
A second-order multiple-time-scaling analysis has been used to describe the interaction 
between a progressive surface wave and a nearly standing subharmonic internal wave 
in a two-layer fluid system. When the wave triad satisfied certain resonance conditions, 
the amplitudes of the internal waves were shown to evolve as complex exponentials. 
This complex exponential, which describes both the growth rate and the frequency 
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modulation of the internal waves, was found to be a function of the fluid layer depths, 
density ratio, and the surface wave conditions. Additionally, the effects of viscosity 
were included for the first time in the interaction problem, and the destabilizing effect 
of viscosity emerged as a remarkable result. Physically, the interfacial pressure and 
normal velocity were found to be 90" out of phase in the inviscid case, yielding no 
net work done on the internal waves. The inclusion of viscosity in the lower layer 
adjusted the phase of the pressure so that work could be done at the interface. 

The generality of the analysis lends itself to widespread application. In estuarine 
environments, stratified systems consisting of fresh water overlying salt water or water 
overlying a suspended sediment layer frequently occur. In both situations, excitation 
of internal waves contributes significantly to mixing and water quality and in the 
latter case internal waves contribute to enhancement of suspension and transport of 
sediment and pollutants trapped in sediment beds. 

In closing, it is worth noting that the present analysis is sufficient to predict an 
initial instability only. Clearly, the exponential growth cannot describe the steady 
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state evolution of the internal waves, or the resonance of three waves of comparable 
amplitude. It is anticipated that by extending the analysis to the next order, and 
allowing for finite internal waves, a governing equation describing the steady state 
amplitudes of the internal waves can be obtained. 
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